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Efficient numerical simulations of microstructure development in magnetorheolog-
ical (MR) fluids are conducted. The simulations, which are based upon a fast
multipole algorithm, treat the magnetic inclusions as two-dimensional continuum
magnetic entities. The development of microstructure is quantified by computing
and recording the time evolution of the effective permeability of the composite
fluid. Such a principle has been previously exploited for the experimental mea-
surements of microstructure development [Jolly, Bender and Mathers, ERMR’97,
Yonezawa, Japan 1997]. As was observed experimentally, numerical simulations
reveal the evolution of microstructure to be multimodal in nature. Unlike the ex-
periments, the numerical simulations afford us the ability to observe the physical
mechanisms associated with various modes.

1 Introduction

The nature of microstructure formation in controllable fluids has been a topic of
recent considerable interest. It is generally believed that the field responsive rheo-
logical effect is sensitive to the nature of the microstructure!. Further, it has been
postulated that the time associated with structure formation is an important con-
stituent of the overall time required for the development of stress within controllable
fluids®. There has been considerable work to understand the nature and temporal
behavior of structure formation in electrorheological (ER) fluids through analyti-
cal models®*5 and numerical simulations®” . Fewer analogous magnetorheological
(MR) fluid studies are found in the literature®®.

In a previous paper!®, we have measured the time scales associated with mi-
crostructure development in MR fluids by examining the evolution of fluid perme-
ability (via. polarization measurements) in response to a step change in applied
magnetic field. This experimental technique is somewhat analogous to the use of
dielectric measurements'1?13 to infer microstructure development in ER fluids in
that the dielectric response of an ER fluid is studied in response to an electrical
stimulus. These studies of MR fluids indicated that the microstructure response
was well-fitted with a bi-exponential function where the two time scales differed
by about a factor of five. The first experimental time constant was found to be
somewhat consistent with predicted flocculation times based on the computed time
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of collision of two dipoles in a viscous media®. Inconsistency was found in the rela-
tionship to volume fraction ¢ - the simple theory predicts ¢ ~ ¢~" where n = 5/3,
whereas n € [2/3,4/3] was observed experimentally.

The notion that microstructure formation occurs at multiple time scales has
been observed in the work of others. Halsey and Toor* used some elegant theory
to argue that structure formation in ER fluids is a two step process: an initial
aggregation to a chain-like structure resulting from electrostatic interaction and a
phase separation to a thermodynamic ground state. The latter process is a result
of thermally induced fluctuations within the chains and occurs on thermal diffusion
time scales. Through numerical simulations that neglected thermal forces, Mohebi
and colleagues® showed that structure formation in MR fluids (¢ = 10%) occurs
at two distinct time scales. These time scales correspond to an initial formation of
disparate chains, and then a migration of chains into longer and thicker structures.
The first process was seen to occur on the millisecond time scale and the second
process was observed to be one to three orders of magnitude slower depending
upon the sample thickness. Hass”, using similar dynamic simulations on ER fluids,
demonstrated two initial time scales separated by an order of magnitude which
he attributes to, first, pair formation and, second, percolating column growth.
The experimental work of Jolly and colleagues'® exhibited time scales that are
comparable to those found in the latter two simulation studies, but could provide
no insight into the mechanisms associated with these time scales.

In this paper, a novel two-dimensional simulation of MR fluid microstructure
dynamics is presented. This simulation treats the particle inclusions as two-
dimensional magnetic entities. The time evolution is considered to be magneti-
cally quasi-static and magnetostatic forces are derived from the solution of (steady)
Maxwell’s equations, recomputed at each instant in time. For this we use a poten-
tial theoretic formulation where the boundary integral equations are solved with a
fast multipole method'*. The simulations are then used to explore the multimodal
nature of microstructure development in MR fluids. These results are compared to
previously reported experimental results'®.

2 Equations of Motion

In this section, we describe the equations of motion for M permeable circular parti-
cles {Qx}L, in a rectangular container Q C IR? that is filled with a non-magnetic
viscous fluid. The particles are randomly distributed initially and the external mag-
netic field Hy is applied in the vertical direction. The motion of the kth particle 1s
governed by Newton’s second law of motion. Particle interactions include magnetic,
hydrodynamic and repelling forces while Brownian and inertial forces are neglected.
By performing dimensional analysis and eliminating small-scale terms (for details,
see Ly et.al.’®), we obtain

‘% =F™5 L FiP and %) = %4(0), (1)
where X, t, f‘rknag, f‘};ep, are dimensionless variables for position, time, magnetic
force and repelling force, respectively.
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The spatial scale is R, where R the the particle radius and the temporal scale is

D . . . . .
Nk where D is the Stokes’ drag coefficient, pq is the permeability for the carrier
Hoilg

oil, and Hy 1s the magnitude of the applied field.

For our simulations, we shall assume that both the particles and the container
walls are “hard’. To approximate this regime, we shall follow the work of Klin-
genberg et.al.® and propose that a “repelling force” acts on the kth particle as it
approaches others or a wall of the container. A simple model for such a force is
given, for instance, by

M

“re ldui| — 2R, |di - 2R .
F; P = —IZ; exp (—[)’T)rk;—exp (—ﬂkT)nk, (2)
- X — X, . . )
where r; = ﬁ, dr; = dist(Qg, ), and 8 > 0 is the repelling parameter.
X — Xk

The wall repelling force uses 1y, an outward unit normal vector at a point p on the
boundary of the container Q where p is nearest to X, on 9Q and |d{2!!| = dist(Qs, Q).

The magnetic force on Qj can be calculated from the local field H with the aid
of the Maxwell stress tensor e™M2* = o [HH? — %|ﬁ|26], (6=unit tensor) as

- 1
mag _ Max = ds 3
F QWﬂngR /@nk 7 e ’ ®)

where 1y, is the unit normal vector on 9. An accurate estimate for the magnetic
force in (3) demands the continuous knowledge of the local magnetic field H, so that
Maxwell’s equations must be resolved at each instant in time. In our simulation,

=

we assume there are no free currents in the domain, so that the local magnetostatic
field H can be written in terms of a scalar potential @,

H=-Vo. (4)
Moreover, @ is the solution of the Laplace’s equation
V- (uV®) =0, (5)

with highly oscillatory coefficients

| pr in the kth particle, (6)
H= po  in the carrier oil.
For our simulation, we assume gy ~ 200040. Along with equation (5) we require

the continuity of the magnetic potential ® and of the normal component of B. That
is, for any k= 1,2,..., M,

lim @®(p)= lim P(p), 7
p_}an() p_}an() (7)
pE Qg p € Qf
0P 0P
L L= (p) L E . (p) (8)
pEQ p € Qf

where 7l , is an outward unit normal vector at p € 9Q, and Q¢ = Q\ﬁk is the
complement of Q.
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3 Integral Equation Formulation and Boundary Element
Discretization

Although the coefficients of the Laplace’s equation (5) are rapidly changing in space,
they do remain constant in each €. Thus the overall potential can be derived from
appropriate charge densities supported on the boundaries of the particles. These
densities satisfy certain integral equations which are, in principle, amenable to
solution by finite (boundary) element approximation. As we discussed in detail
elsewhere'®, the difficulties associated with the high computational cost of classical
boundary element approximation for this kind of problem can, in fact, be overcome
through the implementation of the Fast Multipole Method'*.

To derive the integral equations, let us denote by 0€y the boundary of the
domain . We also denote by Qg the fluid region Q\{UM ,Q.} and impose the
following Neumann boundary condition on 99

oP
%laﬂo =g 9)

To guarantee the solvability and uniqueness of the solution of equations (5)-(9), we
make the following requirements on g and ®; namely,

/ gds=0 and /@di:O.
890 Q

A potential @ satisfying (5)-(9) can be represented by single-layer potentials® in
the form

2 =Y [ Gooswise, rew (10)

Here, G(p,q) = % log |p — q| is the fundamental solution of the Laplace’s equation
in IR%. The functions &;’s on {9€; }jM:o are appropriate (unknown) surface densities.
Note that the potential ® in (10) automatically satisfies A® = 0 on Qy, for k£ =
0,1,..., M, and the continuity condition (7) at the interfaces. In addition, using
the jump relations of potential theory!®, we obtain from equations (8) and (9) the
following system of Fredholm equations of the second kind,

- ZZ G(p, )& (0)ds(q) = —29(p), (11)

_mz/ 57 G0 0 ()ds(a) = 0. (12)

where A\, = L;,Lto and equations (11)-(12) hold for p € 99 and {8Qk}¥:1,

respectively. /Ecqua/éfons (11)-(12) are then discretized and solved with the help
of the fast multipole method'®. A similar approach with details, implemented for
MR applications, can be found in our earlier work'®, where the Dirichlet boundary
conditions were assumed at the exterior boundary and the resulting formulations
involved both the single- and double-layer integral potentials. We also remark here
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that because our the potential formulation ® in (10) consists of only the single
formulation, numerical implementation is more efficient and integral singularities
are removable. Numerical results are discussed in the next section.

4 Numerical Results and Discussion
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Figure 1. Microstructure formation for 5% and 25% volume-fraction samples in four stages
(¢ =initial, first time scale (1), second time scale (72), and large time).

Simulations were conducted on six different volume fractions ranging from 5% to
30%. The external field is applied in the vertical direction. Simulation results for
two volume fractions responding to a step field input are shown in Figure 1. Dis-
crete times within the simulation are shown from the initial configuration to the
near steady state microstructure. An issue in such dynamic simulations involves the
means by which the state of the microstructure is quantified. Researchers have used
quantities related to nearest neighbor inter-particle distances and spatial correla-
tion functions to monitor the state of a microstructure ", Others have used mean
square particle displacement®?. In a manner analogous to a previously reported
experimental technique'®, we will use the composite magnetic permeability to quan-
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Figure 2. Simulated effective permeability z(¢) as a function of non-dimensional time ¢ for six
different volume fractions.

tify the evolution of microstructure. This method exploits the fact that a percolated
microstructure is significantly more permeable than a randomly mixed microstruc-
ture. Some theoretical limits of this behavior are discussed in Simon et.al.'®. It
was reported by Ly et.al.'®, that the evolution of permeability in microstructure
formation is closely related to the mean particle velocity. During the simulation
process, we compute the effective permeability ji(¢), which represents the overall
response for the microstructure formation. The definition and the formulation for
the effective permeability, which is based on the theory of homogenization'®, are
derived in Ly et.al.??. Figure 2 shows the permeability response of the six samples
to a step input in magnetic field. It should be pointed out that the simulations are
displayed in dimensionless times and dimensional times can be obtained by multi-
plying the dimensionless times with the time scale described earlier in Section 2. As
expected, both the initial and the steady state permeabilities are linearly related
to the volume fraction, ¢.

As was found experimentally, the permeability response is well-fitted with a
bi-exponential function. These fits are also applied to the permeabilities shown in
Figure 2 and the resultant time constants and coefficients are presented in Table 1.
Microstructure frames corresponding to the two time constants (7 and 73) are
shown in Fig. 1. From these frames, it is evident that the first mode corresponds
to particle pair and short chain formation and the second mode corresponds to
coalescence of the short chains into longer percolating chain structures. Similar
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observations from simulations of ER and MR fluids have been made by others
including Hass” and Mohebi et.al.®. The two time constants are separated by a
factor of 5 to 10. An additional observation can be made in noting that magnetic
energy is proportional to permeability for linear materials. In particular, it can
be seen that about 65 — 70% of the microstructures magnetic potential energy
is stored upon initial application of the field. The balance of the stored magnetic
energy occurs during the microstructure formation. For high volume fraction fluids,
over 90% of the energy is stored within the first time constant dropping to below
70% as volume fraction decreases.

Bi-Exponential Fit

)= Ax (1= et/T) + Bx(1—el/™) + p(0)

(;5 kal P A B ,LL(O)
5% 16.2 88.8 0.170 | 0.368 | 1.46
10% 8.81 43.8 0.467 | 0.667 | 1.97
15% 5.87 46.1 1.090 | 0.517 | 2.54
20% 3.93 44.2 1.550 | 0.418 | 3.22
25% 3.35 38.6 1.960 | 0.281 | 3.95
30% 3.12 29.9 2.030 | 0.359 | 4.83

Table 1. Effective permeability and bi-exponential fit.

Figure 3 depicts the first time constant as a function of volume fraction ¢.
Simulation results as well as experimental results from Jolly et.al.'? are presented
where the simulation results have been dimensionalized to correspond with the ex-
perimental conditions. As shown in several references®?"1% simple theory suggests
that the relationship between microstructure formation time and volume fraction

should follow a power law behavior with a power index of n = —5/3. In particular,
it has been argued that the time for pair formation is proportional to
NHo T \5/3 .
te ~ —[(— — 1], 13
Gy - (1)
where J, is the particle polarization. Our simulation results have indicated that
the first time constant is inversely proportional to volume fraction (n = —1) and

experimental results have yielded power indices between —4/3 and —2/3. The
disparity of this behavior with the simple theory is not surprising since the theory
is based on two isolated particles (magnetically modeled as dipoles) in a viscous
medium. We further note that our simulations do not account for the magnetic
nonlinearity of the particle material, which may contribute to the range of power
law indices in the experimental data. If it is assumed that J, = B;/¢, where B; is
the intrinsic induction of the composite, then B; can be substituted into Eq. (13)
and the aforementioned power law index becomes n + 2 (hence, n + 2 = 1/3 for
theory, n42 = 1 for simulation and 2/3 < (n+2) < 4/3 for experiments). Figure 4
contains previously reported!® experimental time constants and scaled simulation
time constants as a function of n¢/B?. It can be seen that the time constants
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rise linearly with this function. The numerical results are shifted with respect to
experimental results. This may be the result of structured error in the experimental
measurement of B;.

Conclusions

A numerical algorithm has been developed to accurately study both the microstruc-
ture and the permeability with the aid of the fast multipole method. The results
have been quantified with the two time scales for structure formation (r1: particle
pairing and short-chain formation; m: coalescence of short chains into longer per-
colating chain structures). Our investigation reveals that the first time scale, 7, is
inversely proportional to the particle volume fraction - a result that is in reasonable
agreement with previous experimental results'®. It is anticipated that the use of
permeability (or polarization) measurements to monitor the state of microstruc-
ture in MR fluids will be particularly useful in shear. Other means of quantifying
microstructure, especially those involving monitoring mean particle motion, may
fall short in shear environment. Permeability measurements from both particle
simulation and experiments should be capable of resolving microstructure forma-
tion and the shear-induced microstructure degradation. Correlation between such
measurements and the MR response will be a topic of future research.

10

¢

Figure 3. The first time constant as a function of volume fraction: (triangles)-experimental results
for H = 17.5 kA/m and n = 0.13 Pa-s; (diamonds)-experimental results for H = 7 kA/m and
n = 0.13 Pa-s. The small circles are simulation results that have been dimensionalized to match
the corresponding experimental results. Inverse linear fits are also shown. Experimental results
are from Jolly et.all®.
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Figure 4. Microstructural response times as a function of their assumed theoretical dependency.
Triangles and diamonds are the first and second dimensionalized time constants from simulation.
Circles and dots are the first and second experimentally measured time constants!®.
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